3.3.73 \(\int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx\) [273]

3.3.73.1 Optimal result
3.3.73.2 Mathematica [A] (verified)
3.3.73.3 Rubi [A] (verified)
3.3.73.4 Maple [A] (verified)
3.3.73.5 Fricas [A] (verification not implemented)
3.3.73.6 Sympy [F]
3.3.73.7 Maxima [F]
3.3.73.8 Giac [F]
3.3.73.9 Mupad [F(-1)]

3.3.73.1 Optimal result

Integrand size = 28, antiderivative size = 198 \[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=-\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2} E\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {-a+b x^2} \sqrt {1+\frac {d x^2}{c}}}-\frac {\sqrt {a} (b c+a d) \sqrt {1-\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {-a+b x^2} \sqrt {-c-d x^2}} \]

output
-EllipticE(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*b^(1/2)*(1-b*x^2/a) 
^(1/2)*(-d*x^2-c)^(1/2)/d/(b*x^2-a)^(1/2)/(1+d*x^2/c)^(1/2)-(a*d+b*c)*Elli 
pticF(x*b^(1/2)/a^(1/2),(-a*d/b/c)^(1/2))*a^(1/2)*(1-b*x^2/a)^(1/2)*(1+d*x 
^2/c)^(1/2)/d/b^(1/2)/(b*x^2-a)^(1/2)/(-d*x^2-c)^(1/2)
 
3.3.73.2 Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.47 \[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=\frac {\sqrt {-a+b x^2} \sqrt {\frac {c+d x^2}{c}} E\left (\arcsin \left (\sqrt {-\frac {d}{c}} x\right )|-\frac {b c}{a d}\right )}{\sqrt {-\frac {d}{c}} \sqrt {\frac {a-b x^2}{a}} \sqrt {-c-d x^2}} \]

input
Integrate[Sqrt[-a + b*x^2]/Sqrt[-c - d*x^2],x]
 
output
(Sqrt[-a + b*x^2]*Sqrt[(c + d*x^2)/c]*EllipticE[ArcSin[Sqrt[-(d/c)]*x], -( 
(b*c)/(a*d))])/(Sqrt[-(d/c)]*Sqrt[(a - b*x^2)/a]*Sqrt[-c - d*x^2])
 
3.3.73.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {326, 323, 323, 321, 331, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {b x^2-a}}{\sqrt {-c-d x^2}} \, dx\)

\(\Big \downarrow \) 326

\(\displaystyle -\frac {(a d+b c) \int \frac {1}{\sqrt {b x^2-a} \sqrt {-d x^2-c}}dx}{d}-\frac {b \int \frac {\sqrt {-d x^2-c}}{\sqrt {b x^2-a}}dx}{d}\)

\(\Big \downarrow \) 323

\(\displaystyle -\frac {b \int \frac {\sqrt {-d x^2-c}}{\sqrt {b x^2-a}}dx}{d}-\frac {\sqrt {\frac {d x^2}{c}+1} (a d+b c) \int \frac {1}{\sqrt {b x^2-a} \sqrt {\frac {d x^2}{c}+1}}dx}{d \sqrt {-c-d x^2}}\)

\(\Big \downarrow \) 323

\(\displaystyle -\frac {b \int \frac {\sqrt {-d x^2-c}}{\sqrt {b x^2-a}}dx}{d}-\frac {\sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) \int \frac {1}{\sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1}}dx}{d \sqrt {b x^2-a} \sqrt {-c-d x^2}}\)

\(\Big \downarrow \) 321

\(\displaystyle -\frac {b \int \frac {\sqrt {-d x^2-c}}{\sqrt {b x^2-a}}dx}{d}-\frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {b x^2-a} \sqrt {-c-d x^2}}\)

\(\Big \downarrow \) 331

\(\displaystyle -\frac {b \sqrt {1-\frac {b x^2}{a}} \int \frac {\sqrt {-d x^2-c}}{\sqrt {1-\frac {b x^2}{a}}}dx}{d \sqrt {b x^2-a}}-\frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {b x^2-a} \sqrt {-c-d x^2}}\)

\(\Big \downarrow \) 330

\(\displaystyle -\frac {b \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2} \int \frac {\sqrt {\frac {d x^2}{c}+1}}{\sqrt {1-\frac {b x^2}{a}}}dx}{d \sqrt {b x^2-a} \sqrt {\frac {d x^2}{c}+1}}-\frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {b x^2-a} \sqrt {-c-d x^2}}\)

\(\Big \downarrow \) 327

\(\displaystyle -\frac {\sqrt {a} \sqrt {1-\frac {b x^2}{a}} \sqrt {\frac {d x^2}{c}+1} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right ),-\frac {a d}{b c}\right )}{\sqrt {b} d \sqrt {b x^2-a} \sqrt {-c-d x^2}}-\frac {\sqrt {a} \sqrt {b} \sqrt {1-\frac {b x^2}{a}} \sqrt {-c-d x^2} E\left (\arcsin \left (\frac {\sqrt {b} x}{\sqrt {a}}\right )|-\frac {a d}{b c}\right )}{d \sqrt {b x^2-a} \sqrt {\frac {d x^2}{c}+1}}\)

input
Int[Sqrt[-a + b*x^2]/Sqrt[-c - d*x^2],x]
 
output
-((Sqrt[a]*Sqrt[b]*Sqrt[1 - (b*x^2)/a]*Sqrt[-c - d*x^2]*EllipticE[ArcSin[( 
Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(d*Sqrt[-a + b*x^2]*Sqrt[1 + (d*x^2) 
/c])) - (Sqrt[a]*(b*c + a*d)*Sqrt[1 - (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*Ellip 
ticF[ArcSin[(Sqrt[b]*x)/Sqrt[a]], -((a*d)/(b*c))])/(Sqrt[b]*d*Sqrt[-a + b* 
x^2]*Sqrt[-c - d*x^2])
 

3.3.73.3.1 Defintions of rubi rules used

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 326
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
b/d   Int[Sqrt[c + d*x^2]/Sqrt[a + b*x^2], x], x] - Simp[(b*c - a*d)/d   In 
t[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && 
PosQ[d/c] && NegQ[b/a]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 331
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]
 
3.3.73.4 Maple [A] (verified)

Time = 2.56 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.84

method result size
default \(\frac {\left (-a F\left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right ) d -b c F\left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right )+b c E\left (x \sqrt {\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right )\right ) \sqrt {b \,x^{2}-a}\, \sqrt {-d \,x^{2}-c}\, \sqrt {\frac {-b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}}{\left (-b d \,x^{4}+a d \,x^{2}-c b \,x^{2}+a c \right ) \sqrt {\frac {b}{a}}\, d}\) \(166\)
elliptic \(\frac {\sqrt {\left (-b \,x^{2}+a \right ) \left (d \,x^{2}+c \right )}\, \left (-\frac {a \sqrt {1-\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )}{\sqrt {\frac {b}{a}}\, \sqrt {-b d \,x^{4}+a d \,x^{2}-c b \,x^{2}+a c}}-\frac {b c \sqrt {1-\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )-E\left (x \sqrt {\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )\right )}{\sqrt {\frac {b}{a}}\, \sqrt {-b d \,x^{4}+a d \,x^{2}-c b \,x^{2}+a c}\, d}\right )}{\sqrt {b \,x^{2}-a}\, \sqrt {-d \,x^{2}-c}}\) \(263\)

input
int((b*x^2-a)^(1/2)/(-d*x^2-c)^(1/2),x,method=_RETURNVERBOSE)
 
output
(-a*EllipticF(x*(b/a)^(1/2),(-a*d/b/c)^(1/2))*d-b*c*EllipticF(x*(b/a)^(1/2 
),(-a*d/b/c)^(1/2))+b*c*EllipticE(x*(b/a)^(1/2),(-a*d/b/c)^(1/2)))*(b*x^2- 
a)^(1/2)*(-d*x^2-c)^(1/2)*((-b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)/(-b*d*x 
^4+a*d*x^2-b*c*x^2+a*c)/(b/a)^(1/2)/d
 
3.3.73.5 Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.61 \[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=-\frac {\sqrt {-b d} a x \sqrt {\frac {a}{b}} E(\arcsin \left (\frac {\sqrt {\frac {a}{b}}}{x}\right )\,|\,-\frac {b c}{a d}) - \sqrt {-b d} {\left (a - b\right )} x \sqrt {\frac {a}{b}} F(\arcsin \left (\frac {\sqrt {\frac {a}{b}}}{x}\right )\,|\,-\frac {b c}{a d}) + \sqrt {b x^{2} - a} \sqrt {-d x^{2} - c} b}{b d x} \]

input
integrate((b*x^2-a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="fricas")
 
output
-(sqrt(-b*d)*a*x*sqrt(a/b)*elliptic_e(arcsin(sqrt(a/b)/x), -b*c/(a*d)) - s 
qrt(-b*d)*(a - b)*x*sqrt(a/b)*elliptic_f(arcsin(sqrt(a/b)/x), -b*c/(a*d)) 
+ sqrt(b*x^2 - a)*sqrt(-d*x^2 - c)*b)/(b*d*x)
 
3.3.73.6 Sympy [F]

\[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=\int \frac {\sqrt {- a + b x^{2}}}{\sqrt {- c - d x^{2}}}\, dx \]

input
integrate((b*x**2-a)**(1/2)/(-d*x**2-c)**(1/2),x)
 
output
Integral(sqrt(-a + b*x**2)/sqrt(-c - d*x**2), x)
 
3.3.73.7 Maxima [F]

\[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=\int { \frac {\sqrt {b x^{2} - a}}{\sqrt {-d x^{2} - c}} \,d x } \]

input
integrate((b*x^2-a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*x^2 - a)/sqrt(-d*x^2 - c), x)
 
3.3.73.8 Giac [F]

\[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=\int { \frac {\sqrt {b x^{2} - a}}{\sqrt {-d x^{2} - c}} \,d x } \]

input
integrate((b*x^2-a)^(1/2)/(-d*x^2-c)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*x^2 - a)/sqrt(-d*x^2 - c), x)
 
3.3.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-a+b x^2}}{\sqrt {-c-d x^2}} \, dx=\int \frac {\sqrt {b\,x^2-a}}{\sqrt {-d\,x^2-c}} \,d x \]

input
int((b*x^2 - a)^(1/2)/(- c - d*x^2)^(1/2),x)
 
output
int((b*x^2 - a)^(1/2)/(- c - d*x^2)^(1/2), x)